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Key points

� In two monogenic models of absence epilepsy, interictal beta/gamma power is augmented in
homozygous stargazer (stg/stg) but not homozygous tottering (tg/tg) mice.

� There are distinct gene-linked patterns of aberrant phase–amplitude coupling in the interictal
EEG of both stg/stg and tg/tg mice, compared to +/+ and stg/+ mice.

� Treatment with ethosuximide significantly blocks seizures in both genotypes, but the abnormal
phase–amplitude coupling remains.

� Seizure-free stg/+ mice have normal power and phase–amplitude coupling, but beta/gamma
power is significantly reduced with NMDA receptor blockade, revealing a latent cortical network
phenotype that is separable from, and therefore not a result of, seizures.

� Altogether, these findings reveal gene-linked quantitative electrographic biomarkers free from
epileptiform activity, and provide a potential network correlate for persistent cognitive deficits
in absence epilepsy despite effective treatment.

Abstract In childhood absence epilepsy, cortical seizures are brief and intermittent; however
there are extended periods without behavioural or electrographic ictal events. This genetic
disorder is associated with variable degrees of cognitive dysfunction, but no consistent functional
biomarkers that might provide insight into interictal cortical function have been described.
Previous work in monogenic mouse models of absence epilepsy have shown that the interictal
EEG displays augmented beta/gamma power in homozygous stargazer (stg/stg) mice bearing a
presynaptic AMPA receptor defect, but not homozygous tottering (tg/tg) mice with a P/Q type
calcium channel mutation. To further evaluate the interictal EEG, we quantified phase–amplitude
coupling (PAC) in stg/stg, stg/+, tg/tg and wild-type (+/+) mice. We found distinct gene-linked
patterns of aberrant PAC in stg/stg and tg/tg mice compared to +/+ and stg/+ mice. Treatment
with ethosuximide significantly blocks seizures in both stg/stg and tg/tg, but the abnormal PAC
remains. Stg/+ mice are seizure free with normal baseline beta/gamma power and normal
theta-gamma PAC, but like stg/stg mice, beta/gamma power is significantly reduced by NMDA
receptor blockade, a treatment that paradoxically enhances seizures in stg/stg mice. Stg/+ mice,
therefore, have a latent cortical network phenotype that is veiled by NMDA-mediated neuro-
transmission. Altogether, these findings reveal gene-linked quantitative electrographic biomarkers
in the absence of epileptiform activity and provide a potential network correlate for persistent
cognitive deficits in absence epilepsy despite effective treatment.
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Introduction

Childhood absence epilepsy is a genetic seizure disorder
characterized by frequent spontaneous episodes of
behavioural arrest associated with generalized spike-wave
discharges in the electroencephalogram (EEG). Some
patients with absence epilepsy also have neurocognitive
deficits that are known to persist despite effective pharma-
cological seizure treatment (Masur et al. 2013).
This suggests that genetic mutations responsible for
the epileptic phenotype may also be independently
responsible for cognitive deficits even without the presence
of seizures. Therefore, even though the interictal EEG is
generally considered to appear clinically normal, closer
examination beyond standard electrographic markers
may yield abnormalities that serve as biomarkers for
underlying gene-linked cortical dysfunction. For example,
augmented high frequency oscillations have been reported
in patients with childhood absence epilepsy using
magnetoencephalography (Xiang et al. 2014).

The homozygous stargazer (stg/stg) and tottering (tg/tg)
mouse models of absence epilepsy are due to distinct
monogenic mutations. stg/stg mice bear a mutation in
Cacng2 leading to AMPA receptor trafficking dysfunction
in a subset of inhibitory neurons (Noebels et al. 1990;
Barad et al. 2012; Maheshwari et al. 2013), and a mutation
in the tg/tg gene Cacna1a impairs neurotransmitter release
within the thalamocortical circuit (Noebels & Sidman,
1979; Rossignol et al. 2013; Bomben et al. 2016). We
have previously found that stg/stg mice have significantly
elevated interictal beta and gamma power, in contrast to
tg/tg mice, which have normal power across frequencies
between 2 and 300 Hz (Maheshwari et al. 2016). Therefore,
a simple change in baseline EEG power alone is not
a uniform finding in absence epilepsy and therefore
may not selectively reflect genetic dysfunction or the
potential neurocognitive deficits experienced by patients
with absence epilepsy.

Another potential EEG biomarker of circuit level
dynamics is cross-frequency coupling (Canolty & Knight,
2010). One common type of cross-frequency coupling is
phase–amplitude coupling (PAC) where the phase of a
slower oscillation is correlated with the amplitude of a
faster oscillation. The magnitude of PAC represents the
putative interactions between underlying circuits which
behave abnormally in models of focal epilepsy (Guirgis
et al. 2015; Amiri et al. 2016; Edakawa et al. 2016), but has
not yet been evaluated in generalized epilepsies. Critically,
PAC is a potentially useful metric as the correlation
between different oscillatory EEG components may vary
without overt changes in the power spectrum, and can
therefore uniquely differ for similar power spectra. Here
we examine the relationship between genetic mutations,
absence epilepsy and PAC in the interictal EEG. We show
that even in the absence of epileptiform activity, there

are reproducible electrographic biomarkers of genetic
dysfunction.

Methods

Ethical approval

Experiments were carried out according to the guidelines
laid down by the Baylor Institutional Animal Care and Use
Committee (IACUC) and conform to the principles and
regulations of The Journal of Physiology (Grundy, 2015).
Mice were adult (> 6 weeks old) homozygous stargazer
(stg/stg) and tottering (tg/tg) mutants, heterozygous
stargazer mice (stg/+), and wild-type (+/+) mice of either
sex, originally obtained from The Jackson Laboratory
(Bar Harbor, Maine) and maintained on a C57BL6/J
background for over 10 generations. Genotypes were
confirmed by PCR of tail DNA (Burgess & Noebels, 1999).
For electrode implantation, mice were anaesthetized by
tribromoethanol (Avertin; 20 µl g−1 I.P.) or isoflurane
(2–4% in O2) anaesthesia and surgically implanted with
silver wire electrodes (0.127 mm diameter) inserted into
the epidural space over the somatosensory cortex (1 mm
posterior and 3 mm lateral to bregma) bilaterally through
cranial burr holes and attached to a microminiature
connector cemented to the skull. The reference electrode
was placed over the right frontal lobe (1 mm anterior and
1 mm lateral to bregma) and the ground electrode was
placed over the left frontal lobe. Mice were allowed to
recover for at least 2 weeks prior to recording. Access to
food and water was available ad libitum. If necessary, mice
were euthanized by CO2 inhalation using an automated
CO2 delivery system (SmartBox, Euthanex, Palmer, PA,
USA).

Video-EEG data recording

EEG and behavioural activity in freely moving mice
were recorded using simultaneous video-EEG monitoring
(Harmonie software version 6.1c, Stellate Systems, Natus
Medical, Pleasanton, CA, USA). All in vivo experiments
were performed between 12.00 and 15.00 h to prevent
confounding diurnal variation (Smyk et al. 2011). EEG
signals were sampled at 2 kHz with an anti-aliasing filter.
Prior to recording, mice were allowed to acclimate to the
recording environment for 30 min, and video-EEG was
then collected for a 30 min sampling period (the base-
line period for both power and PAC analysis), followed by
intraperitoneal drug injection. Drug effect was analysed
between 30 and 60 min after drug administration.

Video-EEG data pre-processing

Investigators were blinded to genotype and drug
administered prior to data analysis. EEG data were then
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screened for seizure activity under the supervision of
a board-certified epileptologist (A.M.). Seizures were
defined by episodes of bilateral spike and wave discharges
with amplitude greater than or equal to 1.5× base-
line voltage and concomitant video-recorded behavioural
arrest. EEGs were reviewed without knowledge of
genotype or treatment, and any recording artefacts
were removed from analysis. Since the power of high
frequency oscillations may be falsely measured when there
are sharp electrographic contours (Kramer et al. 2008;
Scheffer-Teixeira et al. 2013), identified seizure episodes
were digitally extracted in EEGLab (Delorme & Makeig,
2004) to allow evaluation of only interictal activity periods.
Raw data were notch filtered with a 1 Hz window around
60, 120 and 180 Hz using EEGLab (Delorme & Makeig,
2004) in MATLAB (Mathworks, Inc., Natick, MA, USA).

Phase–amplitude coupling analysis

PAC analyses were performed in EEGLab (Delorme
& Makeig, 2004), Brainstorm (Tadel et al. 2011) and
custom routines (MATLAB). The pre-processed inter-
ictal EEG was analysed independently in both left and
right recording leads. The right parietal lead was used
for further analysis, unless there was significant artefact,
in which case the left recording lead was used. Base-
line PAC was evaluated in Brainstorm by creating a PAC
comodulogram with frequencies of 2–30 Hz for phase
(x-axis) and 30–200 Hz (y-axis) for amplitude. The PAC
algorithm in Brainstorm uses the mean vector length
method of determining a ‘direct PAC’ measure (Özkurt
& Schnitzler, 2011). Given significant PAC dependence on
state (Scheffzük et al. 2011), animals with peak direct PAC
below 10−2 indicated were excluded from the analysis. As
a control measure, comodulograms were also estimated

using two other common methods: phase-locking value
(Penny et al. 2008) and modulation index (Tort et al.
2010). As described below, these methods produced
highly similar results as statistically assessed by rank
correlation of comodulogram matrices between methods,
and therefore the main analyses focused on the direct
PAC estimation data. Comodulograms were then used to
identify and compare peak PAC frequency pairs (phase and
amplitude). Periods of active wakefulness were determined
by exporting segments of EEG that corresponded to
locomotor activity on simultaneous video recording.

Power analysis

Pre- and post-drug interictal EEG power spectrum
was estimated using the spectral analysis function
(spectropo()) in EEGLab (Delorme & Makeig, 2004).
Left and right recording leads were analysed separately
for power between 2 and 200 Hz with a window size of
8 s and a window overlap of 6 s; AP was then averaged
across both leads. Relative power (RP) was calculated by
dividing the absolute power values for each frequency by
the total power (TP; 2–200 Hz), and then normalized with
a log transformation before comparison between mice
(RP = AP/TP), similar to methods previously described
(Koopman et al. 1996; Jobert et al. 2012).

Drugs

Ethosuximide (Sigma-Aldrich, St Louis, MO, USA)
and the NMDA antagonist MK-801 (Tocris Bioscience,
Minneapolis, MN, USA) were first dissolved in DMSO,
brought to 1% volume/weight of each animal being
tested in a phosphate-buffered saline solution (Thermo
Fisher Scientific, Waltham, MA, USA), and then injected
intraperitoneally.
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Figure 1. Representative examples of PAC in +/+, stg/+, stg/stg, and tg/tg mice
Comodulograms showed prominent theta–gamma coupling in +/+ and stg/+ mice. In contrast, there was maximal
PAC with alpha/beta–high gamma coupling in stg/stg mice, and maximal PAC with delta–high gamma coupling in
tg/tg mice (A–D, red arrows). One second of raw seizure-free data traces is displayed in E–H (vertical bar, 100 µV
for raw and low frequency traces, 300 µV for high frequency traces).
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Statistics

The statistical significance of peak PAC pairs was estimated
using circular data shuffling to create 2000 surrogates for
comparison via a Rayliegh test at P < 0.05. Group analysis
of the resultant data was performed using a one-way
repeated measures ANOVA with Tukey’s test for multiple
comparisons (for baseline studies) or Wilcoxon’s test (for
drug studies), and the adjusted significance was set at
P < 0.05. Comparisons between maximum PAC, phase
for frequency and phase for amplitude before and after
medication administration was analyzed with a Student’s
paired t-test. Finally, given the clear differences observed
in mean PAC comodulograms between animal groups
(see below), we explored the utility of PAC profiles to
identify group similarity between single animals in an
unsupervised data driven manner. Similar to the PAC
method comparison above, comodulograms for each
animal were transformed into vectors and correlated
(Spearman’s rank correlation). This correlation/similarity
matrix (comprising all animals) was then converted
to a dissimilarity matrix (1 − correlation value).
Multidimensional scaling (MDS) was then applied to the
dissimilarity matrix to visualize the PAC based similarity

of each animal (where geometric distance conveys
similarity). These analytic steps are highly similar to
representational similarity analysis commonly performed
in functional brain imaging (Kriegeskorte et al. 2008).

For power analysis, statistical differences between
groups at baseline were tested using a two-way ANOVA
with Dunnett’s post hoc test comparing to +/+ at each
frequency. Differences due to drug exposure were tested
using a repeated-measures two-way ANOVA to compare
groups before and after drug administration with Sidak’s
post hoc test at each frequency. Statistical significance
was set at an adjusted P < 0.05 at two or more
consecutive frequencies to avoid spurious significance. All
statistical analysis was performed using Prism version 7.01
(GraphPad Software, La Jolla, CA, USA).

Results

Gene-specific shift in maximal phase amplitude
coupling in stargazer and tottering mice

Comodulograms between the phase of 2–30 Hz and
the amplitude of 30–200 Hz were created for +/+,
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Figure 2. Gene-specific shifts in the PAC comodulogram
A, average comodulograms for +/+, stg/+, stg/stg and tg/tg mice reveal distinct abnormal patterns in both
homozygous mutants. B, increased average direct PAC in stg/stg mice compared to all other genotypes. C, no
significant change in the maximum PAC. D, there is a significant shift to a greater phase frequency in stg/stg and
to a lower phase frequency in tg/tg mice. E, there is a significant increase in the amplitude frequency in both
stg/stg and tg/tg mice (one-way ANOVA with multiple comparisons, ∗adjusted P < 0.05, ∗∗adjusted P < 0.005).
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stg/+, stg/stg and tg/tg mice using the baseline inter-
ictal EEG. Sample PAC comodulograms are displayed
in Fig. 1A–D. In wild-type and stg/+ mice, there was
significant coupling between gamma oscillations at the
peak of theta (Fig. 1A and E). In contrast, stg/stg mice
showed maximal coupling between the phase of alpha/beta
and high-gamma oscillations (Fig. 1C and G), while tg/tg

mice showed maximal coupling between the phase of delta
and high-gamma oscillations (Fig. 1D and H).

Group PAC data are shown in Fig. 2. There was
no significant difference between +/+ and stg/+ mice
in the average overall PAC, the maximum PAC value,
maximum frequency for phase, or maximum frequency
for amplitude. stg/stg mice had no difference in maximum
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Figure 3. Similar comodulograms with different methods of calculating PAC: original Brainstorm method
(direct PAC, top), phase-locking value (PLV, middle) and modulation index (MI, bottom)
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Figure 4. Similar comodulograms when evaluating only active wakefulness
A, no significant difference in the percentage of time in active wakefulness across genotypes. B, comodulograms
show similar peak frequencies for phase and amplitude with shifts in stg/stg and tg/tg but not in stg/+ mice.
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PAC value, but a significantly increased average PAC
and increased frequencies for both peak phase and peak
amplitude, shifting the peak in the comodulogram right-
ward and upward. tg/tg mice also had no difference in
maximum PAC value and had no difference in average
PAC. However, tg/tg mice did have significantly decreased
peak frequency for phase and increased peak frequency for
amplitude, shifting the comodulogram peak leftward and
upward (Fig. 2D and E).

Validation of phase–amplitude coupling

To ensure that group differences in mean PAC
comodulograms were invariant to estimation method,
we also calculated mean comodulograms using the
phase-locking value (PLV; Penny et al. 2008) and
modulation index (MI; Tort et al. 2010) techniques (see
Methods). As seen in Fig. 3, all three methods of PAC
estimation produce highly similar mean comodulograms.
To quantify this similarity we performed rank-correlations
(Spearman) on comodulograms between methods for
each animal group. Both alternative PAC techniques

showed highly similar comodulogram profiles compared
with the initial direct PAC method: (i) PLV vs. direct PAC
(+/+= 0.93, stg/+= 0.92, stg/stg = 0.90, tg/tg = 0.96); (ii)
MI vs. direct PAC (+/+= 0.98, stg/+= 0.97, stg/stg = 0.96,
tg/tg = 0.99); all P < 0.001.

To ensure that state of arousal was not confounding
the difference in PAC between genotypes, we next asked
whether there was a significant difference between the time
mice were actively wakeful during the baseline recordings.
The activity was quite variable across all genotypes,
ranging from 4.15% to 98.9% active, with no significant
difference between groups (Fig. 4A). When only these
blocks of active wakefulness were analysed, the maximum
frequency for phase and frequency for amplitude were not
significantly changed across all genotypes (Fig. 4B).

Persistent abnormal phase–amplitude coupling with
ethosuximide

We next evaluated the degree of PAC before and after
treating seizures with the antiepileptic drug ethosuximide,
the preferred treatment for human childhood absence
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Figure 5. Persistent aberrant interictal PAC following abolition of seizures with ethosuximide in both
stg/stg (A) and tg/tg mice (B)
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epilepsy (Glauser et al. 2013). As we have shown
previously, a 200 mg kg−1 intraperitoneal dose of
ethosuximide significantly reduces seizure activity for
several hours for both stg/stg and tg/tg mice (Maheshwari
et al. 2013). Compared to the 30 min baseline period
prior to injection, there was no observable change to the
comodulogram between 30 and 60 min after injection
(Fig. 5A and B). The average PAC, maximum PAC,
maximum frequency for phase, and maximum frequency
for amplitude all had no significant difference comparing
pre- and post-injection (stg/stg, n = 8, tg/tg, n = 7, paired
t test, P > 0.05, Fig. 5).

Comodulogram profiles partially cluster genetic
groups

To explore the utility of comodulogram profiles as putative
EEG biomarkers of genetic class at the single animal
level, we performed unsupervised similarity analysis.
We compared the similarity of PAC comodulograms
between all animals, and visualized this comparison
geometrically using MDS (see Methods). Consistent with
the qualitative features of the mean comodulograms
(Fig. 2), MDS reveals a clear dissociation of stg/stg mice
from overlapping members of the +/+ and stg/+ mice
(Fig. 6). In addition, aberrant patterns in tg/tg mice were
more distant from stg/stg mice, but partially overlapping
with +/+ and stg/+, consistent with comodulogram
features. These relatively clear genotypic differences in
group membership predict the potential for more formal
classification approaches and possible diagnostic utility
utilizing PAC comodulogram features.

+/+

stg/+

stg/stg

tg/tg

Figure 6. Group multidimensional scaling (MDS) plot showing
distinct clustering of stg/stg away from tg/tg, +/+, and stg/+
MDS was applied to a dissimilarity matrix (1 − Spearman rank
correlation value) to visualize the PAC based similarity of each
animal, where geometric distance conveys similarity (see Methods).

Heterozygous mice display no epilepsy with normal
absolute and relative beta/gamma power

In all baseline recordings, +/+ and stg/+ mice never
exhibited seizures. Both stg/+ (n = 11) and tg/tg (n = 11)
mice had no significant change in baseline absolute power
compared to +/+ (n = 11) mice, while stg/stg mice had
significantly augmented absolute power between 11.25
and 39.5 Hz as well as 188.25–200 Hz (Fig. 7A). When
correcting for total power, stg/+ and tg/tg mice continued
to have no significant difference from +/+ mice, but stg/stg
mice had augmented 13.25–19.0 Hz relative power and
a resultant reduction in 81.75–152.5 Hz relative power
between 81.75 and 152.5 Hz (Fig. 7B).

Heterozygous stargazer mice display a reduction in
beta/gamma power with NMDA receptor blockade

We previously found that the augmented beta/gamma
power in stg/stg mice was reduced after administration
of NMDA receptor blockade (Maheshwari et al. 2016),
consistent with the hypothesis that impaired AMPA
receptor trafficking in cortical parvalbumin-expressing
neurons in stg/stg mice leads to an abnormal dependence
on NMDA receptors to maintain these fast oscillations.
Therefore, we next evaluated the response of stg/+ to
the NMDA antagonist MK-801 and found a response
similar to stg/stg (Fig. 8), with both a reduction of
beta/gamma power and the absence of a high gamma
peak (150–180 Hz) that is seen in both +/+ and
tg/tg mice. Therefore, despite freedom from seizures
and a normal baseline gamma power, stg/+ mice
have electrographic abnormalities that are unmasked
by NMDA receptor blockade. Altogether, these results
are consistent with evidence that the AMPA receptor
trafficking deficit, primarily located on cortical inter-
neuron dendrites (Maheshwari et al. 2013), leads to
an abnormal dependence on NMDA receptors for
maintenance of beta/gamma power in stg/+ mice.

Abnormal PAC response to NMDA receptor blockade
in stargazer mice

Since MK-801 brought gamma power back down to
normal levels in stg/stg mice, we next asked if NMDA
receptor blockade could also normalize PAC. Overall,
+/+, stg/+ and tg/tg mice had a similar response, shifting
the maximum PAC to an island centred in theta for phase
and high-gamma for amplitude, whereas the maximum
PAC in stg/stg mice shifted over to delta for phase and
broad gamma for amplitude (Fig. 9A, E and F; n = 6
for each genotype). In +/+ mice, MK-801 caused the
maximum direct PAC to increase to 0.102 ± 0.0133,
significantly greater than the post-MK-801 maximum
direct PAC in stg/stg (0.034 ± 0.009, mean ± SEM,
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one-way ANOVA with Tukey’s correction for multiple
comparisons; adjusted P = 0.0288, Fig. 9B). While stg/+
and tg/tg did not have as robust a response to MK-801
as +/+, only stg/stg had a significantly reduced change
in maximum PAC (−0.001 ± 0.006) compared to +/+
(0.079 ± 0.015, one-way ANOVA with Tukey’s correction
for multiple comparisons; adjusted P = 0.0115, Fig. 9C).

Discussion

In this study, we investigated whether oscillations within
the EEG were significantly changed in mice with mono-
genic mutations associated with absence epilepsy in three
states: (1) in the interictal state in stg/stg and tg/tg which
have active epilepsy; (2) in treated epileptic mice which no
longer have seizures; and (3) with stg/+ mice which have
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no epilepsy. In each of these categories, we found potential
EEG biomarkers for monogenic cortical dysfunction by
evaluating absolute/relative power and phase–amplitude
coupling at baseline and in response to medications.

Phase–amplitude coupling in stg/+ mice was
unchanged compared to +/+ mice, showing prominent
theta–gamma coupling. Theta–gamma coupling in
parietal neocortex has been previously reported, pre-
dominantly in the awake state, with the greatest
coupling occurring at the peak of the theta phase
(Scheffzük et al. 2011). stg/stg and tg/tg mice, however,

both had significantly shifted interictal comodulograms
compared to +/+ mice. stg/stg mice were significantly
shifted rightward and upward, while tg/tg mice were
significantly shifted leftward and upward. Since absolute
and relative power were otherwise unaffected in tg/tg
mice (Maheshwari et al. 2016), abnormal interictal PAC
may have a greater association with absence epilepsy
than abnormal baseline power. Further studies of inter-
ictal PAC in other models and patients with absence
epilepsy are necessary to more thoroughly evaluate this
hypothesis. Part of this confirmation should involve close
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consideration of EEG waveform morphology and its
confounding influence on PAC estimation (Cole & Voytek,
2017). While sleep–wake cycles can also affect the degree
of neocortical PAC in mice (Scheffzük et al. 2011), the
shifts in phase–amplitude coupling remained when only
periods of active wakefulness were examined (Fig. 4B).
Nonetheless, a detailed analysis of the effect of brain state
on interictal phase–amplitude coupling in epileptic mice
is another important avenue of future research.

Treatment of seizures with ethosuximide in both
genotypes did not significantly alter the underlying
aberrant PAC. This finding suggests that the genetic
mutations in these models, to some degree, generate
abnormal circuit behaviour present during both the inter-
ictal and ictal states. Persistent abnormal PAC may under-
lie attention deficits in patients with absence epilepsy that
are otherwise seizure-free after treatment of their epilepsy
(Masur et al. 2013). This hypothesis is supported by
recent work that correlates theta–gamma coupling with
attention tasks in humans (Szczepanski et al. 2014) as
well as impaired theta–gamma coupling in patients with
attention deficit disorder (Kim et al. 2015). However, it is
also possible that abnormal PAC and absence seizures are
both epiphenomenal manifestations of underlying genetic
dysfunction, without a causal link between abnormal PAC
and deficits in attention. Further studies are necessary
to dissect potential causal relationships between these
phenomena.

Since we did not specifically test cognitive performance,
we can only speculate as to the meaning of the
shift in baseline PAC in the epileptic mice. Reduced
theta–gamma coupling has been seen in amyloid pre-
cursor protein-deficient Alzheimer model mice (Zhang
et al. 2016) and with reduced fast inhibition onto PV inter-
neurons in the hippocampus (Wulff et al. 2009). However,
a shift in PAC has not previously been seen specifically due
to a genetic mutation. A shift in PAC has been seen in the
consciousness transition with anaesthesia (Mukamel et al.
2014), and a shift from theta–gamma to alpha–gamma
coupling has also been seen with visual tasks and attention
(Voytek et al. 2010; Jensen et al. 2014). We hypothesize
that the shifts we see in these mutant epileptic mice may
be due to the specific effects of each genetic mutation on
the underlying circuit responsible for phase–amplitude
coupling (Onslow et al. 2014). Experiments modelling
changes in cell type-specific connectivity have shown that
theoretically these shifts can occur (Sotero, 2015).

Finally, stg/+ mice had no seizures and normal power.
However, similar to stg/stg mice, stg/+ mice were found
to have a significant drop in beta/gamma power with the
NMDA receptor blocker MK-801. Therefore, despite the
absence of electroclinical seizures, the EEG was able to
reveal a biomarker for pharmacogenetic dysfunction when
challenged with NMDA receptor blockade. In contrast to
ethosuximide, which reduced seizure activity but had no

effect on PAC in stg/stg mice, MK-801 worsened seizures
and significantly shifted PAC to the left. In +/+ mice,
MK-801 shifted PAC from theta–gamma to theta–high
gamma, which has been similarly shown in wild-type
rats in response to ketamine, another NMDA receptor
blocker (Cordon et al. 2015). Interestingly, PAC did not
normalize to baseline +/+ levels, nor did it respond like
+/+, but rather shifted to delta for phase and broadly
over low and high gamma for amplitude. Since PAC in
tg/tg responded similarly to +/+ in response to MK-801
which also significantly reduced seizures, we have shown
that interictal PAC in mutant mice is not necessarily fixed,
and there is a potential for pharmacologically shifting PAC
while also concomitantly treating seizures.

With these experiments, we have demonstrated three
different ways in which an EEG can show the potential
for genetic dysfunction independent from seizures or any
sharp activity. First, interictal PAC was abnormal at base-
line in epileptic mice. Second, PAC remained abnormal
despite pharmacological treatment with ethosuximide.
Finally, heterozygous dysfunction was unmasked by a drop
in beta/gamma power with NMDA receptor blockade.
Therefore, when evaluating mouse models or patients
with epilepsy, we have found that analysing both power
and PAC, in addition to challenging subjects with various
medications, is critical before declaring the interictal EEG
as ‘normal’.
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Zhang X, Zhong W, Brankačk J, Weyer SW, Müller UC, Tort
ABL & Draguhn A (2016). Impaired theta-gamma coupling
in APP-deficient mice. Sci Rep 6, 21948.

Additional information

Competing interests

There are no conflicts of interest for any of the authors.

Author contributions

A.M. conceived and designed the work; A.M., I.A., M.W., R.M.,
K.Y. and S.P. acquired, analysed and interpreted the data; B.L.F.
and J.L.N. analysed and interpreted the data. All authors revised

the work critically for important intellectual content, approved
the final version of the manuscript, and agreed to be accountable
for all aspects of the work in ensuring that questions related to the
accuracy or integrity of any part of the work were appropriately
investigated and resolved. Al persons designated as authors
qualify for authorship, and all those who qualify for authorship
are listed.

Funding

Funding sources include the National Institutes of Health
National Institute of Neurological Disorders and Stroke NIH
NINDS K08 NS096029 (A.M.), NIH NINDS R01 NS29709
(J.L.N.); and National Institute for Mental Health NIH NIMH
R00 MH103479 (B.L.F.).

Translational perspective

Patients with epilepsy frequently have comorbidities that may persist despite successful treatment
of seizures, but the current focus of clinical EEG is limited to detection of the presence or absence
of epileptiform activity. With an appropriate sampling rate, careful attention to patients’ state of
arousal, and selection of epochs free from myogenic artefact, the work presented here suggests that
quantitative analysis of features encoded in human scalp EEG, such as phase–amplitude coupling,
may serve as a biomarker for cognitive deficits, which may then be treated in parallel with seizures.
Further behavioural studies in rodents and humans with simultaneous intracranial and scalp EEG
will be necessary to validate this hypothesis.
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